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The response of a weakly damped bistable oscillator to an external periodic force is considered theoretically.
In the approximation of weak signals we can write a linearized equation for the signal and the corresponding
nonlinear equation for the noise. These equations contain two unknown parameters: An effective stiffness and
an additional damping factor. In the case of the weakly damped bistable oscillator, considered here, the
two-dimensional Fokker-Planck equation corresponding to the equation for the noise can be solved approxi-
mately by changing to a slow variable �“energy”� and applying a method of successive approximation. This
approach allows us to find the unknown parameters and to calculate the amplitude ratio of the output and input
signals, i.e., the gain factor.
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INTRODUCTION

In the past three decades a plethora of works has been
devoted to studies of stochastic resonance �SR�. The notion
of SR was first introduced �1–3� in an attempt to understand
the Earth’s ice-age cycle. By this term, the authors of these
and other works imply the presence in the system under con-
sideration of a resonancelike nonmonotonic dependence on
noise intensity of the system’s response to a weak harmonic
signal. For the most part this “resonance” has little in com-
mon with classical resonance observed in a system when
some of its frequencies coincide or become multiples of each
other.

There is, however, no precise generally accepted defini-
tion of SR. Some authors use the requirement of a noise-
induced increase in the signal-to-noise ratio at the output.
Others restrict the term to describe manifestations of the phe-
nomenon in bistable systems. Moreover, preferred explana-
tions of SR tend to be somewhat individual. SR has a pre-
history as well as a history and a very active present, with a
huge international activity and applications appearing in al-
most every area of science. Given the extensive reviews of
SR �4–6� and Chap. 14 in �7� we will restrict ourselves to a
few succinct introductory remarks to set the context of the
present paper.

SR was observed in bistable electronic circuits �11–13�, in
a ring laser �14�, and then in numerous other systems in both
the physical and biological sciences; new applications are
frequently reported. Recently, a phenomenon similar to sto-
chastic resonance was discovered experimentally in acousti-
cally excited, turbulent, submerged jets �15�, where the role
of noise is played by turbulence. Originally, SR seemed a
rather mysterious phenomenon, and it was assumed to be
restricted to the overdamped bistable systems in which it had
been discovered. Many theories of SR, valid under particular
circumstances, were proposed �5�. However, it was the real-
ization �16� that SR could be described by linear response
theory �LRT� that enabled the phenomenon to be set squarely
in the context of earlier research in statistical physics and led
to the appreciation �4� that rather similar concepts had been
developed by Debye �17� more than half a century earlier,

which may be considered as the “prehistory” of SR. More
importantly, LRT enlarged the range of occurrence of SR to
encompass all systems characterized by strongly noise-
dependent susceptibilities, and the requirement of bistability
then disappeared. The LRT approach has been validated on
bistable �16,18,19� and monostable �20� systems in the limit
of extremely weak signals when thermal equilibrium can be
assumed and the susceptibility can be obtained from the fluc-
tuation dissipation theorem, as well as in highly nonequilib-
rium systems �21,22� where the susceptibility must be ob-
tained in other ways. Thus the LRT approximation
illuminates very well the essential physics underlying SR.
However, it does not necessarily provide the best way of
calculating accurately the signal enhancement to be antici-
pated under any given conditions �see �7,23� for discus-
sions�.

In what follows we propose a different theoretical ap-
proach and we show that it is capable, in principle, of pro-
viding whatever level of accuracy may be required. It is
based on the idea �7� that the influence of noise on a nonlin-
ear system may be quantified in terms of the resultant change
in the effective parameters of the system. This general ap-
proach is applicable, not only to SR in the archetypal over-
damped bistable system �23–25�, but also to the SR that
arises in weakly damped �underdamped� bistable oscillators
�7�. Note that the general approach is not restricted to the SR
configuration, and it can be applied for the analysis of a wide
class of weak damped nonautonomous systems. We develop
a theoretical description of SR in weakly damped oscillators
by using this approach. The idea underlying our approach is
similar to that developed in mechanics for systems subject to
fast vibrations �8�. In the latter work, it was shown that fast
vibration changes the system’s parameters with respect to
slow �averaged� motions. For the calculation of these param-
eters, the initial equations of the system were broken into
two parts: For fast and slow motion respectively. In a very
similar way, we split our initial equation into two equations:
An averaged equation for the signal, and a stochastic equa-
tion for the noise. These equations contain two unknown
parameters—an effective stiffness and an effective damping
factor, which are expressed in terms of the third moment of
the probability distribution. By calculating this moment, we
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can in turn calculate these unknown parameters. Note that
the scheme differs from that used to describe the vibrational
resonance in bistable system �9� and diffusion on a vibrated
substrate �10�. In the latter cases averaging over the fast pe-
riodic force was used.

SR has been demonstrated in weakly damped bistable os-
cillators and studied extensively, both experimentally and
theoretically �26–29�. It was shown experimentally �28� that,
in some parameter regions, a double-peaked structure ap-
pears in the dependence of the gain factor on noise intensity.
It is observed for small damping and within a frequency
range close to the deterministic natural frequency of small
oscillations. Alfonsi et al. �28� explained the double-peaked
structure in terms of the coexistence and competition of in-
trawell SR of monostable systems �31�, and the conventional
interwell SR seen in overdamped bistable oscillators. Some
matching conditions between the signal frequency and the
introduced noise-dependent frequencies were used for the
explanation of both peaks �28�. To describe the double struc-
ture analytically, the method of moments was considered
�29� with a linear response background. Although the method
provides a satisfactory description, the authors stressed the
poor convergence of the method for weak damping and the
necessity of using a large number of moments �29�. However
our numerous calculations have shown that the method of
moments as applied to the SR problem diverges, although it
can work for other even more complex problems �30�. In
addition to intra- and interwell motions, used for the expla-
nation in �28�, Kang et al. �29� considered vibrations over
the barrier to explain the double-peaked structure. Note that
the explanations cannot be considered adequate since, for
example, the frequency matching conditions used do not
hold, as we show below. In this paper, too, we consider ana-
lytically the case of double-peak structure. We show below
that the additional damping factor plays a crucial role in the
appearance of the two peaks. This follows from the fact that,
in the first approximation giving satisfactory agreement with
numerical calculation with respect to effective stiffness, two
peaks are not obtained.

In Sec. I we present the results of numerical simulations
of SR and a comparison of different approaches. Our analytic
technique for calculation of the system response using the
effective parameters approach with a linearized equation is
presented in the Sec. II, but the associated technical details
are provided in the Appendix. Different orders of approxima-
tion are discussed in Sec. III and the conclusions drawn are
summarized in Sec. IV.

I. MODEL AND NUMERICAL RESULTS

Let us consider a weakly damped bistable oscillator de-
scribed by the equation

ẍ + 2�ẋ − x + x3 = A cos �t + �K��t� , �1�

where ��t� is white noise of intensity K, and ��K�1 is a
damping factor. One example of such an oscillator is a pen-
dulum placed between the opposite poles of a magnet. The
parameters �=0.1, A=0.1, and �=1 are selected from the
range within which the gain displays the double-peaked

structure. Note that its presence does not depend on A
�within the validity of theory� but is defined by � and � �see
below�. The noise intensity K is chosen as the adjustable
parameter for consideration. We emphasize that, for the se-
lected parameter values, interstate transitions of the bistable
oscillator do not occur in the absence of noise.

For completeness of the presentation, numerical simula-
tions of the Langevin equation �1� were performed and the
power spectrum P��� for the system output x�t� and for the
input signal A cos �t+�K��t� were calculated. Additionally
the two-state approximation �5� was used to calculate the
mean switching frequency ��� between the states of the os-
cillator. The variable x�t� was therefore filtered by a sym-
metrical trigger with thresholds �= ±0.5 to produce a di-
chotomous �two-state� signal xf�t� confined to the values
±	xm	 only; here xm= ±1 are the coordinates of the stable
states of Eq. �1�. Calculating the mean number of sign
changes of xf�t� during unit time interval we could estimate
���.

It should be noted that we have used a nonstandard tech-
nique for numerical calculation of the parameters of interest
from Eq. �1�. This technique is described in �7�. Usually the
calculations of such parameters are based on the analysis of
power spectra of x�t� in which, as known, discrete compo-
nents at the signal frequency � must be present. It is very
difficult to calculate from these spectra the ratio between the
amplitudes of output and input signal �the gain factor Q� and
the phase shift �. Our technique is based on the principle of
the so-called synchronous detector. It involves calculation of
the sine Bs and cosine Bc components of the output signal by
averaging over long time:

Bs =
2

nT



0

nT

x�t�sin �t dt ,

Bc =
2

nT



0

nT

x�t�cos �t dt ,

where T=2� /� and n is a large integer. It is evident that

Q = �Bs
2 + Bc

2, � = arctan
Bs

Bc
. �2�

The output signal component for xf�t� and the gain factor Q
for the two state filter were defined in similar ways.

Using the power spectra of x�t�, xf�t� and the input signal
we calculate the signal-to-noise ratio R following the stan-
dard definition �5,32�. The signal-to-noise ratio is defined as
the common logarithm of the power ratio between the signal,
Si

2, and noise, Pn, components

R = 10 log10
Si

2

Pn
. �3�

By definition, R is measured in decibel �dB� units. Following
�5� the noise component was estimated using the power spec-
trum P��� of the output signal x�t� �or xf�t�� in the following
way

LANDA, KHOVANOV, AND MCCLINTOCK PHYSICAL REVIEW E 77, 011111 �2008�

011111-2



Pn = ��
1

2m� �
j=i−m,j�i

j=i+m

P�� j�
 , �4�

where �� is the frequency resolution in the numerically cal-
culated power spectrum P���; �i=� and m=10 defines a
bandwidth to approximate the noise component at signal fre-
quency � �33�. The input R was included to verify the results
of numerical simulations, since the input R can be calculated
directly as R=10 log10�A2 /K���.

Figure 1 collects the results of numerical simulations. The
SR effect manifests in the dependence of the gain factor Q
on K as the presence of two maximal values, whereas the
signal-to-noise ratio, calculated for the full dynamics of x�t�,
demonstrates monotonic decay without any extremum as
shown by the full line in Fig. 1�a�. However, R, calculated by
the two-state method �dot-dashed line in Fig. 1�a��, reveals
SR. There is evidently no correspondence between the be-
haviors of R and Q. On the other hand the dependence of ���
on K clearly indicates the absence of a matching condition
between the mean switching frequency and the signal fre-
quency for the second maximum of Q. The latter conclusion
does not support the explanation of SR presented by Alfonsi
et al. �28�. Note that the gain factors Q, calculated via both
the full dynamics x�t� �the full line in Fig. 1�c�� and the
two-state approximation xf�t� �the dot-dashed line in Fig.
1�c��, demonstrate similar behavior for large noise intensity.

In addition, Q and � were calculated numerically �dashed
lines in Figs. 1�c� and 1�d�� by linear response theory. In
LRT �16,17,27� the time dependent mean value of the system
response is determined via the linear susceptibility of the
system:

�x�t�� = A Re�	���exp�− i�t�� + const, �5�

where A and � are the amplitude and frequency of the ex-
ternal signal and 	��� is the linear susceptibility of the sys-
tem. An important feature of LRT is the fact that the suscep-
tibility is determined in the absence of external signal and it
has the following relationship to the spectral density S0���
of the system when forced only by noise:

Re 	��� =
2�

K
P


0




d�1
S0��1��1

2

��1
2 − �2�

, �6�

Im 	��� =
���

K
S0��� . �7�

The gain factor Q and the phase shift � are defined by the
following relations via the susceptibility:

Q = 		���	 , �8�

� = − arctan� Im 	���
Re 	���
 . �9�

The spectral density S0��� was calculated by numerical
simulation of the Langevin equation �1� for A=0 and then
Eqs. �8� and �9� were used to determine Q and �. The results
�dashed lines in Figs. 1�c� and 1�d�� demonstrate the appli-
cability of LRT.

Now let us turn to the analytic consideration of the prob-
lem. We use a weak signal approximation that allows us to
arrive at a linear equation for the signal and a nonlinear
equation for the noise. Note that, although the idea of LRT
looks very similar to the linearization technique presented
below, they are in fact fundamentally different approaches as
it will be clear from what follows.

The output of system �1� consists �34� of two components.
One corresponds to the external signal and is periodic func-
tion of time and the other is the noisy part. Let us denote the
signal part as s�t� and noisy as n�t�. In the weak signal ap-
proximation the signal part of the output can be presented
�see details below� as the response of a deterministic linear
system:

s̈ + �2� + b�ṡ + cs = A cos �t , �10�

where 2�+b and c are an effective damping and effective
stiffness �by analogy with the stiffness of a linear spring�,
respectively. They are determined by both the signal part s
and the noise n. The effective damping consists of an initial
system damping 2� and additional term b. This representa-
tion allows us to use a simplified description in terms of the
response of a linear oscillator, and it introduces a natural
frequency of the system �10� and, consequently, of the sys-
tem �1�.
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FIG. 1. �Color online� Results of numerical simulations. �a� The
signal-to-noise ratio R as a function of noise intensity K. The
dashed line corresponds to the input value, calculated numerically,
whereas the circles correspond to theoretical values. The full line
corresponds to the output R calculated for x�t�; the dot-dashed line
was calculated using the two-state approximation. �b� The mean
switching frequency ��� is shown as a function of K. �c� The gain
factor Q and �d� the phase shift � are shown as functions of noise
intensity K. Full lines corresponds to numerical simulations of Eq.
�1�, dashed lines correspond to linear response theory, and dot-
dashed lines correspond to results that were calculated numerically
in the two-state approximation.
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The noise-induced changes in the effective stiffness and
damping factor result in a corresponding change in the effec-
tive natural frequency. It follows that the response of such an
oscillator to the input signal A cos �t is dependent on the
noise intensity and the system parameters. Numerical simu-
lations of Eq. �1� have confirmed that this is indeed the case.
As shown in Figs. 2�a� and 2�b�, the gain factor Q and the
phase shift � depend significantly on the signal frequency �.
For �=0.5 the dependences are close to the case of an over-
damped oscillator �23,24�, whereas for larger frequencies
they differ markedly. The double peaked structure in Q vs K
is only observed within a specific frequency range: Within a
certain range of � close to the oscillator’s natural frequency
for small oscillations, these dependences have two maxima.
The first maximum is observed for small, and the second
maximum for large, noise intensities. For the second maxi-
mum the dependence on � of the noise intensity Km �Fig.
2�c�� corresponding to the maximum of Q is similar to that
for an overdamped oscillator. Whereas for the first maximum
�located at small K�, the value of Km decreases as � in-
creases. The first maximum is caused by a resonancelike
moderate change of the noise-induced additional damping
factor, whereas the second maximum is caused by an abrupt

change in oscillation frequency associated with the onset of
interwell transitions. The first maximum appears when the
noise intensity and signal amplitude are such that the effec-
tive natural frequency of small oscillations becomes equal to
the signal frequency.

In contrast to the overdamped oscillator �23,24�, the de-
pendences of Q on � are of a resonant character, with a
resonant frequency �r depending on K �see Fig. 2�d��: As K
increases, �r at first decreases abruptly, and then increases
slowly. Such behavior of the resonant frequency is attribut-
able to the nonmonotonic change in effective stiffness and
damping factor with K. The fact that the resonant frequency
of a nonlinear oscillator may be controlled by external noise
is of potential importance in practical applications.

Starting from values of Q and � calculated numerically,
we can calculate the effective stiffness c, the addition b to
the damping factor, and the effective natural frequency �0 by
use of the equations

c = �2 +
cos �

Q
,

b = − �2� +
sin �

�Q
� ,

�0 =�c − �� +
b

2
�2

. �11�

The calculated dependences of c, b, and �0 on K are illus-
trated in Fig. 3 for A=0.1 and the same frequencies as in
Figs. 2�a� and 2�b�. Comparing the dependence of the effec-
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FIG. 2. �Color online� Dependences of the �a� gain factor Q and
�b� phase shift � on the noise intensity K for �=0.1, A=0.1 and
�=0.5, �=1, and �=1.25 �curves 1, 2, and 3, respectively�; �c� the
plot of Km versus � for maximum of Q; �d� the numerical depen-
dence of the resonant frequency �r on K.
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FIG. 3. �Color online� Dependences on noise intensity K of �a�
the effective stiffness c, �b� the addition b to the damping factor,
and �c� the natural frequency �0, for �=0.1, A=0.1 and �=0.5, �
=1, and �=1.25 �curves 1, 2, and 3, respectively�.
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tive natural frequency �0 with the resonant frequency �7� we
can see that they are somewhat different.

These results clearly demonstrate significant dependence
of Q and � on both the noise and the signal parameters.
Consequently, any real information-carrying signal will be
significantly distorted, so that SR is not an appropriate way
to amplify such signals. However, SR is very effective for
the task of signal determination, e.g., in computer tomogra-
phy or to locate submarines.

II. DEVELOPMENT OF THE THEORY

For the sake of convenience we introduce a conditional
small parameter � and rewrite Eq. �1� as

ẍ + 2��̃ẋ − x + x3 = A cos �t + ��K̃��t� . �12�

To solve the problem analytically, we write the solution of
Eq. �12� as

x�t� = s�t� + n�t� , �13�

where s�t�= �x�t�� and n is the deviation from this mean
value. As in earlier work �7,23,24� we separate Eq. �12� into
two equations: One describing quantities averaged over the
statistical ensemble and the other describing deviations from
the averaged values. In so doing we take into account that
the third moment m3= �n3� depends on the signal s�t�. In the
linear approximation with respect to s we can set m3=as
+�bṡ, where a and b are unknown parameters. To the same
approximation, the equations for s and n are

s̈ + ��2� + b�ṡ + cs = A cos �t , �14�

n̈ − n + n3 + �3n2 − 1 − c�s − �bṡ + 2��ṅ = ����t� , �15�

where c=3m2−1+a can be treated as an effective stiffness, b
is the addition to damping factor �, and m2= �n2�. It follows
from Eq. �14� that

s�t� = AQ���cos„�t + ����… , �16�

where

Q��� =
1

��c − �2�2 + �2�2� + b�2�2
,

cos ���� = �c − �2�Q��� ,

sin ���� = − ��2� + b��Q��� . �17�

It is thus evident that, if we know c and b, we can calculate
the gain factor Q��� and phase shift ����.

As shown by Stratonovich �35�, for small � it is conve-
nient to introduce the “energy” E, which is a slow variable,
in place of the fast variable ṅ. Such a change of variables
allows us to find, e.g., the exact solution of the Fokker-
Planck equation in the absence of the signal. To do this, we
set

E = u�n� +
ṅ2

2
, �18�

where u�n�=n4 /4−n2 /2 is the bistable potential. Multiplying
Eq. �15� by ṅ and taking account of Eq. �18� we obtain two
Langevin equations for variables n and E:

ṅ = �2„E − u�n�… ,

Ė = − �2„E − u�n�…��3n2 − c − 1�s − bṡ� − 4��„E − u�n�…

+ �2�„E − u�n�…��t� . �19�

It is evident that the solution of Eqs. �19� is real only for E
�u�n�. It follows that E�−1 /4 and 
�E�� 	n 	 �n2�E�,
where


�E� = �n1�E� for − 1/4 � E � 0,

0 for E � 0,
n1,2�E� = �1 � �1 + 4E .

�20�

Taking account of the dependence of noise intensity on E,
the Fokker-Planck equation for the probability density
w�n ,E , t� is

�w

�t
= −

�

�n
��2„E − u�n�…w� +

�

�E
���2„E − u�n�…

���3n2 − c − 1�s − bṡ�t�� + 4��„E − u�n�… − �
K

2

w

+ �K
�

�E
�„E − u�n�…w�� . �21�

Because of the linearity of Eq. �21�, we can represent its
steady-state solution as a sum of three components

w�t,n,E� = w0�n,E� + w1�n,E�s�t� +
w2�n,E�ṡ�t�

�
. �22�

From the normalization condition for w�t ,n ,E�, we obtain
the following conditions:

2

−0.25


 


�E�

n2�E�

w0�n,E�dn dE = 1, �23�



−0.25


 


�E�

n2�E�

w1,2
�e� �n,E�dn dE = 0, �24�

where w1,2
�e� �n ,E� are even components of the functions

w1,2�n ,E�.
For a small harmonic signal s of frequency �, we take the

linear approximation s̈=−�2s. The equations for w0�n ,E�,
w1�n ,E�, and w2�n ,E� are then

�

�n
��2„E − u�n�…w0� = �

�

�E
��4�„E − u�n�… −

K

2

w0

+ K
�

�E
�„E − u�n�…w0�� ,
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− �w2�n,E� +
�

�n
��2„E − u�n�…w1�n,E��

− �
�

�E
��4�„E − u�n�… −

K

2

w1�n,E�

+ K
�

�E
�„E − u�n�…w1�n,E���

= �3n2 − c − 1�
�

�E
��2„E − u�n�…w0�n,E�� ,

�w1�n,E� +
�

�n
��2„E − u�n�…w2�n,E��

− �
�

�E
��4�„E − u�n�… −

K

2

w2�n,E�

+ K
�

�E
�„E − u�n�…w2�n,E���

= − �b
�

�E
��2„E − u�n�…w0�n,E�� . �25�

By direct substitution into Eq. �25� we can check that its
exact solution is

w0�n,E� =
W0�E�

�2„E − u�n�…
, �26�

where

W0�E� = C0 exp�−
4�

K
E� , �27�

and C0 is the normalization constant which can be found
from the condition �23�. Integrating Eq. �26� over E from
u�n� to infinity we find

w0�n� =
C0

2
��K

2�
exp�−

4�u�n�
K

� . �28�

From Eq. �28� it is simple to calculate m2 as a function of
K /�. It is evident from Fig. 4 that it passes through a mini-
mum at K�0.085.

We now seek a solution of Eqs. �25� in the form of a
series expansion in terms of �, as

w1�n,E� = w0�n,E��w10�n,E� + �w11�n,E� + �2w12�n,E�

+ o��3�� ,

w2�n,E� = w0�n,E��w20�n,E� + �w21�n,E� + �2w22�n,E�

+ o��3�� , �29�

where w10�n ,E�, w20�n ,E�, w11�n ,E�, w21�n ,E�, w12�n ,E�,
w22�n ,E�, . . . are all unknown functions. Taking account of
the fact that

�

�E
�2„E − u�n�…w0�n,E�w1j,2j�n,E��

+ �8�

K
„E − u�n�… − 1�w0�n,E�w1j,2j�n,E�

= W0�E��2„E − u�n�…
�w1j,2j�n,E�

�E
�j = 1,2, . . . � ,

�30�

and equating coefficients for the same powers of �, for func-
tions w1j�n ,E� and w2j�n ,E� we obtain the following equa-
tions:

�w10�n,E�
�n

−
�w20�n,E�

�2„E − u�n�…
= −

4�

K
�3n2 − c − 1�,

�w20�n,E�
�n

+
�w10�n,E�

�2„E − u�n�…
=

4�

K
�b , �31�

�w1j�n,E�
�n

−
�w2j�n,E�

�2„E − u�n�…

=
K

2
� �

�E
−

4�

K
���2„E − u�n�…

�w1,j−1�n,E�
�E

�,

for j = 1,2, . . . ,

�w2j�n,E�
�n

+
�w1j�n,E�

�2„E − u�n�…
=

K

2
� �

�E
−

4�

K
�

���2„E − u�n�…
�w2,j−1�n,E�

�E
� .

�32�

The stationary solution of Eqs. �31� and �32�, taken in
combination with the normalization condition for the prob-
ability density w�t ,n ,E�, the equality to zero of �n�, and the
condition m3= �n3�=as�t�+bṡ�t�, allows us to calculate the
required constants c and b. To find the stationary solution we
use the analytic approach outlined below.

It is easy to show that the general solution of the homo-
geneous equations for given j is

w1j
�h��n,E� = C1j cos„�q�n,E�… + C2j sin„�q�n,E�…,

w2j
�h��n,E� = C2j cos„�q�n,E�… − C1j sin„�q�n,E�… , �33�

where C1j and C2j are arbitrary constants,

0 0.1 0.2 0.3 0.4
0.8

0.85

0.9

0.95

1

1.05

K

m
2

FIG. 4. Dependence of the second moment m2 on K.
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q�n,E� = 


�E�

n dn�
�2„E − u�n��…

= � �2

n2�E�
F„g�n,E�,k�E�… for − 1/4 � E � 0,

�1 + 4E�−1/4F„g1�n,E�,k1�E�… for E � 0,

k�E� =
�2�1 + 4E

n2�E�
, g�n,E� =�n2 − n1

2�E�
n2k2�E�

,

k1�E� =
1

k�E�
, g1�n,E� =

1

g�n,E�
, �34�

and F(g�n ,E� ,k�E�) is the incomplete elliptic integral of the
first kind �see Chap. 17 of �36��. Note that q�n ,E� is an odd
function of n.

A partial solution of the inhomogeneous Eqs. �31� and
�32� can be found by a method similar to the well-known
method of variation of constants. Accordingly, we seek a
solution of these equations as

w1j
�in��n,E� = B1j�n,E�cos„�q�n,E�… + B2j�n,E�sin„�q�n,E�… ,

w2j
�in��n,E� = B2j�n,E�cos„�q�n,E�… − B1j�n,E�sin„�q�n,E�… ,

�35�

where B1j�n ,E� and B2j�n ,E� are unknown functions. By
substituting Eq. �35� into Eqs. �31� and �32�, we find the
following equations for these functions:

�B1j�n,E�
�n

cos„�q�n,E�… +
�B2j�n,E�

�n
sin„�q�n,E�…

= F1j�n,E� ,

�B2j�n,E�
�n

cos„�q�n,E�… −
�B1j�n,E�

�n
sin„�q�n,E�…

= F2j�n,E� , �36�

where F1j�n ,E� and F2j�n ,E� are right-hand members of
Eqs. �31� and �32�. Solving Eqs. �36� we find

B1j�n,E� =
 �F1j�n,E�cos„�q�n,E�…

− F2j�n,E�sin„�q�n,E�…�dn ,

B2j�n,E� =
 �F1j�n,E�sin„�q�n,E�…

+ F2j�n,E�cos„�q�n,E�…�dn . �37�

By using these formulas we can solve Eqs. �31� and �32� in
succession. Technical details of the implementation of the
technique described above are presented in the Appendix for
zero and first order approximations.

III. FIRST VERSUS SECOND ORDER OF
APPROXIMATION

The dependences of c, b, and �0 on K for �=0.1 and �
=1, constructed from the first order approximation, are given
by the dashed curves in Fig. 5. The corresponding depen-
dences found from the numerical results presented in �7� are
shown by crosses in the same figure. We see that the theo-
retical dependences differ from those found from numerical
calculations. The most significant difference is observed for
the additional damping factor b. Apparently, this arises be-
cause, in the zeroth approximation with respect to �, b�0
�this means that b��, i.e., a conservative system cannot be-
come dissipative due to noise�, and the higher approxima-
tions are necessary to obtain correct results. Figure 6 illus-
trates the dependences of the gain factor Q and phase shift �
on K. These dependences �dashed lines� also differ from nu-
merical ones, as conditioned the difference in b and c. In
particular, they do not show two resonances.

The results of the second order approximation are shown
in Figs. 5 and 6 by full lines. They are in excellent agreement
with the numerical calculations. For most purposes, there-
fore, it will not be necessary to take the theory beyond the
second approximation.

CONCLUSIONS

Summarized in the unnumbered section next after Sec. 3,
we have described a method of calculating the amplitude
ratio and phase shift between the input and output signals for
a noisy bistable system exhibiting gain due to SR. It is valid
in the small-signal limit, which is usually the regime of in-

1111

1.51.51.51.5

2222

cccc

(a)(a)(a)(a)

0000

0.50.50.50.5

1111

bbbb

(b)(b)(b)(b)

0000 0.10.10.10.1 0.20.20.20.2 0.30.30.30.3 0.40.40.40.4
0.50.50.50.5

1111

1.51.51.51.5

KKKK

ωωωω
0000

(c)(c)(c)(c)

FIG. 5. �Color online� �a� Effective stiffness c, �b� the addition b
to the damping factor, and �c� the natural frequency �0, are shown
as functions of intensity K. Theoretical results in the first and sec-
ond approximations are shown by dashed and full lines, respec-
tively. The dependences found numerically are shown by crosses.
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terest for SR. We tested the results by comparison with nu-
merical simulations. Results calculated in the first approxi-
mation are not in good agreement with the numerics, but
those in the second approximation are in very good agree-
ment.

The essence of the approach introduced above is the rep-
resentation of the response to a harmonic signal of a nonlin-
ear stochastic system by the response to the same signal of
an effective linear deterministic system. The latter is defined
by an effective stiffness and an effective damping which de-
pend on the system nonlinearity, the signal parameters and
the noise intensity. For the calculation of these parameters,
noisy dynamics is considered as a fast motion. It is averaged
to determine the slow motion in terms of the effective stiff-
ness and damping. Consequently, the system response can be
described in terms that are natural for oscillatory systems:
Stiffness and damping. We believe that the method of effec-
tive parameters proposed in this paper provides the most
effective way of understanding the mechanism of SR and the
best means of calculating the response of the system to an
input signal.
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APPENDIX

1. Zeroth order approximation

In the zeroth approximation we find

w10�n,E� = w10
�h��n,E� +

4�

K
��bI20�n,E� + �c + 1�I10�n,E�

− 3I30�n,E�� ,

w20�n,E� = w20
�h� +

4�

K
��bI10�n,E� − �c + 1�I20�n,E�

+ 3I40�n,E�� , �A1�

where

I10�n,E� = 

n0

n

cos��„q�n,E� − q�n�,E�…�dn�,

I20�n,E� = 

n0

n

sin��„q�n,E� − q�n�,E�…�dn�,

I30�n,E� = 

n0

n

�n��2 cos��„q�n,E� − q�n�,E�…�dn�,

I40�n,E� = 

n0

n

�n��2 sin��„q�n,E� − q�n�,E�…�dn�.

�A2�

Here, n0 is an arbitrary number which, for simplicity, we take
as unity.

2. First order approximation

In the first approximation

B11�n,E� = 2��„�bJ2�n,E� + �c + 1�J1�n,E� − 3J3�n,E�…

−
�K

2
��I11�n,E�C10

− �I21�n,E� −
4�

K
I31�n,E��C20
 ,

B21�n,E� = 2��„�bJ1�n,E� − �c + 1�J2�n,E� + 3J4�n,E�…

−
�K

2
��I11�n,E�C20

+ �I21�n,E� −
4�

K
I31�n,E��C10
 , �A3�

where

I11�n,E� = 

n0

n

�2„E − u�n��…� �q�n�,E�
�E

�2

dn�,

I31�n,E� = 

n0

n

�2„E − u�n��…
�q�n�,E�

�E
dn�,

I21�n,E� = 

n0

n ��2�E − u�n���
�2q�n�,E�

�E2

+
1

�2„E − u�n��…

�q�n�,E�
�E �dn�, �A4�

1111
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0000

KKKK

ψψψψ

(b)(b)(b)(b)

FIG. 6. �Color online� �a� Gain factor Q and �b� the phase shift
� are shown as functions of noise intensity K. Theoretical results in
the first and second approximations are shown by dashed and full
lines, respectively. The dependences found numerically are shown
by crosses.
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J1�n,E� = 

n0

n �I111�n�,E� −
4�

K
I112�n�,E��dn�,

J2�n,E� = 

n0

n �I211�n�,E� −
4�

K
I212�n�,E��dn�,

J3�n,E� = 

n0

n �I311�n�,E� −
4�

K
I312�n�,E��dn�,

J4�n,E� = 

n0

n �I411�n�,E� −
4�

K
I412�n�,E��dn�, �A5�

I111�n,E� = 

n0

n ��2„E − u�n�…�� �2q�n,E�
�E2 −

�2q�n�,E�
�E2 �

�sin„�q�n�,E�… − �� �q�n,E�
�E

−
�q�n�,E�

�E
�2

�cos„�q�n�,E�…
 +
1

�2„E − u�n�…

�� �q�n,E�
�E

−
�q�n�,E�

�E
�sin„�q�n�,E�…�dn�,

I211�n,E� = 

n0

n ��2„E − u�n�…�� �2q�n,E�
�E2

−
�2q�n�,E�

�E2 �cos„�q�n�,E�…

+ �� �q�n,E�
�E

−
�q�n�,E�

�E
�2

sin„�q�n�,E�…

+

1
�2„E − u�n�…

� �q�n,E�
�E

−
�q�n�,E�

�E
�

�cos„�q�n�,E�…�dn�,

I311�n,E� = 

n0

n ��2„E − u�n�…�� �2q�n,E�
�E2

−
�2q�n�,E�

�E2 �sin„�q�n�,E�…

− �� �q�n,E�
�E

−
�q�n�,E�

�E
�2

cos„�q�n�,E�…

+

1
�2„E − u�n�…

� �q�n,E�
�E

−
�q�n�,E�

�E
�

�sin„�q�n�,E�…��n��2dn�,

I411�n,E� = 

n0

n ��2„E − u�n�…�� �2q�n,E�
�E2

−
�2q�n�,E�

�E2 �cos„�q�n�,E�…

+ �� �q�n,E�
�E

−
�q�n�,E�

�E
�2

sin„�q�n�,E�…

+

1
�2„E − u�n�…

� �q�n,E�
�E

−
�q�n�,E�

�E
�

�cos„�q�n�,E�…��n��2dn�,

I112�n,E� = �2„E − u�n�…

n0

n � �q�n,E�
�E

−
�q�n�,E�

�E
�

�sin„�q�n�,E�…dn�,

I212�n,E� = �2„E − u�n�…

n0

n � �q�n,E�
�E

−
�q�n�,E�

�E
�

�cos„�q�n�,E�…dn�,

I312�n,E� = �2„E − u�n�…

n0

n � �q�n,E�
�E

−
�q�n�,E�

�E
�

�sin„�q�n�,E�…�n��2dn�,

I412�n,E� = �2„E − u�n�…

n0

n � �q�n,E�
�E

−
�q�n�,E�

�E
�

�cos„�q�n�,E�…�n��2dn�.

The general solution of Eqs. �31� and �32� contains only
four unknown constants C10, C20, C11, C21 and unknown pa-
rameters c and �b. Equations for these unknowns follow
from the normalization condition for the probability density
w�t ,n ,E�, the equality to zero of �n�, and the condition m3

= �n3�=as�t�+bṡ�t�. These equations are

2

−0.25


 


�E�

n2�E� W0�E�
�2„E − u�n�…

�w10,20
�e� �n,E� + �w11,21

�e� �n,E�

+ �2w12,22
�e� �n,E� + ¯ �dn dE = 0,

2

−0.25


 


�E�

n2�E� nW0�E�
�2„E − u�n�…

�w10,20
�o� �n,E� + �w11,21

�o� �n,E�

+ �2w12,22
�o� �n,E� + ¯ �dn dE = 0,

2

−0.25


 


�E�

n2�E� n3W0�E�
�2„E − u�n�…

�w10
�o��n,E� + �w11

�o��n,E�

+ �2w12
�o��n,E� + ¯ �dn dE = a ,
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2

−0.25


 


�E�

n2�E� n3W0�E�
�2„E − u�n�…

�w20
�o��n,E�

+ �w21
�o��n,E� + �2w22

�o��n,E� + ¯ �dn dE = �b ,

�A6�

where superscripts “e” or “o” point to the fact that either
even or odd components must be calculated.

In the first approximation with respect to � Eqs. �A6�
become



−0.25




W0�E��a11C10 + a12�b + ��c11C20 +
K

2
a11C11

+ c12�c + 1� − 3b1�
dE = 0,



−0.25




W0�E��a11C20 − a12�c + 1� + 3b2

− ��c11C10 −
K

2
a11C21 − c12�b�
dE = 0,



−0.25




W0�E��a21C20 + a22�c + 1� − 3b3

− ��c21C10 −
K

2
a21C21 − c22�b�
dE = 0,



−0.25




W0�E��− a21C10 + a22�b − ��c21C20 +
K

2
a21C11

+ c22�c + 1� − 3b4�
dE = 0,



−0.25




W0�E��a31C20 + a32�c + 1� − 3b5

− ��c31C10 −
K

2
a31C21 − c32�b�
dE = a ,



−0.25




W0�E��− a31C10 + a32�b − ��c31C20 +
K

2
a31C11

+ c32�c + 1� − 3b6�
dE = �b , �A7�

where

a11 = 2


�E�

n2�E� cos„�q�n,E�…
�2„E − u�n�…

dn,

a21 = 2


�E�

n2�E� n sin„�q�n,E�…
�2„E − u�n�…

dn,

a31 = 2


�E�

n2�E� n3 sin„�q�n,E�…
�2„E − u�n�…

dn ,

a12 =
8�

K




�E�

n2�E� I20�n,E�
�2„E − u�n�…

dn,

a22 =
8�

K




�E�

n2�E� nI10�n,E�
�2„E − u�n�…

dn,

a32 =
8�

K




�E�

n2�E� n3I10�n,E�
�2„E − u�n�…

dn ,

b2 =
8�

K




�E�

n2�E� I40�n,E�
�2„E − u�n�…

dn,

b3 =
8�

K




�E�

n2�E� nI30�n,E�
�2„E − u�n�…

dn,

b5 =
8�

K




�E�

n2�E� n3I30�n,E�
�2„E − u�n�…

dn ,

c11 = �K


�E�

n2�E� � cos„�q�n,E�…
�2„E − u�n�…

�I21�n,E� −
4�

K
I31�n,E��

−
� sin„�q�n,E�…
�2„E − u�n�…

I11�n,E�
dn ,

c21 = �K


�E�

n2�E� � sin„�q�n,E�…
�2„E − u�n�…

�I21�n,E� −
4�

K
I31�n,E��

+
� cos„�q�n,E�…
�2„E − u�n�…

I11�n,E�
n dn ,

c31 = �K


�E�

n2�E� � sin„�q�n,E�…
�2„E − u�n�…

�I21�n,E� −
4�

K
I31�n,E��

+
� cos„�q�n,E�…
�2„E − u�n�…

I11�n,E�
n3dn ,

c12 = 4��


�E�

n2�E� � cos„�q�n,E�…
�2„E − u�n�…

J1�n,E�

−
sin„�q�n,E�…
�2„E − u�n�…

J2�n,E��dn ,

c22 = 4��


�E�

n2�E� � cos„�q�n,E�…
�2„E − u�n�…

J2�n,E�

+
sin„�q�n,E�…
�2„E − u�n�…

J1�n,E��n dn ,

LANDA, KHOVANOV, AND MCCLINTOCK PHYSICAL REVIEW E 77, 011111 �2008�

011111-10



c32 = 4��


�E�

n2�E� � cos„�q�n,E�…
�2„E − u�n�…

J2�n,E�

+
sin„�q�n,E�…
�2„E − u�n�…

J1�n,E��n3dn ,

b1 = 4��


�E�

n2�E� � cos„�q�n,E�…
�2„E − u�n�…

J3�n,E�

−
sin„�q�n,E�…
�2„E − u�n�…

J4�n,E��dn ,

b4 = 4��


�E�

n2�E� � cos„�q�n,E�…
�2„E − u�n�…

J4�n,E�

+
sin„�q�n,E�…
�2„E − u�n�…

J3�n,E��n dn ,

b6 = 4��


�E�

n2�E� � cos„�q�n,E�…
�2„E − u�n�…

J4�n,E�

+
sin„�q�n,E�…
�2„E − u�n�…

J3�n,E��n3dn .

3. Second order and higher approximations

The expressions for B1j�n ,E� and B2j�n ,E� in the second
and higher approximations are more cumbersome than those
above, so we will not write them explicitly. Note that, start-
ing with the second approximation, we should take into ac-
count only partial solutions of the corresponding inhomoge-
neous equations. In the second approximation Eqs. �A6� are
transformed to equations similar to Eqs. �A7� but more
complicated.
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